Artificial Immune System using Multi-Level Negative Selection Approach to Anomaly Detection

نویسندگان

  • Atef Z. Ghalwash
  • A. A. Youssif
چکیده

Natural immune system (NIS) provides a rich source of inspiration for computer security in the age of the Internet. The Artificial Immune System (AIS) is one of the promising techniques that seek to capture some aspects of the natural immune system. One of the major algorithms to implement the AIS is the Negative Selection (NS) algorithm. The paper proposes a new algorithm called MultiLevel Negative Selection (MLNS) which is an improved variant of the original algorithm. The proposed algorithm is compared with the original negative selection algorithm. Data from the international DARPA data set used to train and test the feasibility of the two algorithms. According to the experimental results, the proposed algorithm outperformed the original negative selection algorithm with higher detection rate while keeping a comparable false alarm rate. Furthermore, the number of detectors needed in case of the proposed algorithm is far less than the number of detectors if a single scale detector is used as in the case of the original negative selection algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Selection and Niching by an Artificial Immune System for Network Intrusion Detection

This paper presents a negative selection algorithm with niching by an artificial immune system, for network intrusion detection. The paper starts by introducing the advantages of negative selection algorithm as a novel distributed anomaly detection approach for the development of a network intrusion detection system. After discussing the problems of existing approaches using negative selection ...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

A Study of Artificial Immune Systems Applied to Anomaly

González, Fabio Ph.D. The University of Memphis. May 2003. A Study of Artificial Immune Systems Applied to Anomaly Detection. Major Professor: Dipankar Dasgupta, Ph.D. The main goal of this research is to examine and to improve the anomaly detection function of artificial immune systems, specifically the negative selection algorithm and other self/non-self recognition techniques. This research ...

متن کامل

A Study of Artificial Immune Systems Applied to Anomaly Detection

González, Fabio Ph.D. The University of Memphis. May 2003. A Study of Artificial Immune Systems Applied to Anomaly Detection. Major Professor: Dipankar Dasgupta, Ph.D. The main goal of this research is to examine and to improve the anomaly detection function of artificial immune systems, specifically the negative selection algorithm and other self/non-self recognition techniques. This research ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006